Ergodic Convergence to a Zero of the Extended Sum

نویسندگان

  • Abdellatif Moudafi
  • Michel Théra
چکیده

In this note we show that the splitting scheme of Passty [7] as well as the barycentric-proximal method of Lehdili & Lemaire [4] can be used to approximate a zero of the extended sum of maximal monotone operators. When the extended sum is maximal monotone, we extend the convergence result obtained by Lehdili & Lemaire for convex functions to the case of maximal monotone operators. Moreover, we recover the main convergence results by Passty and Lehdili & Lemaire when the pointwise sum of the involved operators is maximal monotone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A strong convergence theorem for solutions of zero point problems and fixed point problems

Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated‎. ‎A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces‎.

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Performance Evaluation of the NOMA in Imperfect SIC Mode and Ergodic Capacity Maximization with User Pairing Scenario in Three Users Groups

This paper evaluates the problem of user pairing scenario with similar channel conditions in NOMA with three users per pair. The small difference in the channel gain of the paired users leads to interference in the process of successive interference cancelation (SIC). The incidence of imperfect SIC reduces system capacity. Also, mid users in this scenario will be deprived of the advantages prov...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000